Transistor bipolaire

Relations fondamentales

$$I_c \approx I_o \exp(V_{BE}/V_T)$$
 avec $V_T = kT/q$

K : constante de Boltzman = $1,38 \cdot 10^{-23}$ Watt.seconde / $^{\circ}$ K

q : charge de l'électron = $1.9 \cdot 10^{-19}$ C

T: température absolue en °K

à température ambiante (300°K) $V_T \approx 25 \text{ mV}$

$$\begin{split} & \mathbf{I}_E = \mathbf{I}_C + \mathbf{I}_B \\ & \mathbf{I}_C = \boldsymbol{\beta} \ \mathbf{I}_B \end{split} \qquad \text{si } \boldsymbol{\beta} >> 1 \quad \mathbf{I}_E \approx \mathbf{I}_C \end{split}$$

Transconductance (ou pente)

$$\mathbf{g}_{\mathbf{m}} = \mathbf{I}_{\mathbf{C}}/\mathbf{V}_{\mathbf{T}}$$
 à 300°K $\mathbf{g}_{\mathbf{m}} \approx 40 \; \mathbf{I}_{\mathbf{C}} \; (\text{mA})$

Approximation des petits signaux

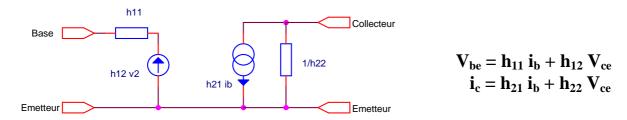
On applique une tension base - émetteur de la forme:

$$\mathbf{V}_{\mathbf{BE}}\left(\mathbf{t}\right) = \mathbf{V}_{\mathbf{BE}} + \mathbf{v}_{\mathbf{be}}$$

V_{BE}: tension de polarisation (constante)

 V_{be} : signal (variable en fonction du temps)

Si
$$v_{\text{he}} \ll V_{\text{T}}$$
 $I_{\text{C}}(t) \approx I_{\text{C}} + (I_{\text{C}}/V_{\text{T}})v_{\text{he}}$

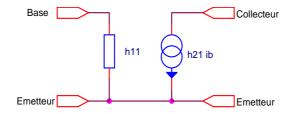

I_C: Courant de polarisation (constant)

 $i_c = (I_C/V_T)\nu_{be} = g_m \nu_{be}$: partie signal du courant collecteur

$$i_{\rm c} = \beta i_{\rm b} = \mathbf{g}_{\rm m} \mathbf{v}_{\rm be}$$

L'approximation des petits signaux permet de linéariser le fonctionnement du transistor.

Schéma équivalent (émetteur commun)



Dans la pratique $h_{12} \approx 0$ et on néglige souvent h_{22}

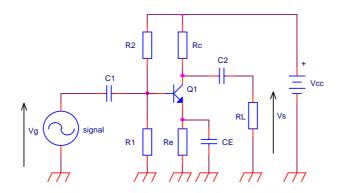
h₁₁ est la résistance d'entrée du transistor

 $h_{21} = \beta$ est le gain en courant du transistor

Schéma équivalent simplifié du transistor

$$V_{be} = h_{11} i_b$$

 $i_c = h_{21} i_b = g_m V_{be}$
 $g_m = h_{21} / h_{11}$


Schéma équivalent petits signaux d'un circuit

Pour établir le schéma équivalent petits signaux d'un circuit:

- on remplace le transistor par son schéma équivalent,
- on court-circuite toutes les sources de tension continue.

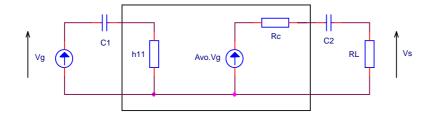
L'application des lois générales de l'électricité permet de calculer les paramètres caractéristiques du circuit.

Amplificateur en émetteur commun

• Gain en tension en petits signaux, moyenne fréquence

L'impédance des condensateurs est très faible à la fréquence considérée.

$$Av = V_S / \, V_g =$$
 - $\beta \, R_s / h_{11} =$ - $g_m \, R_S$

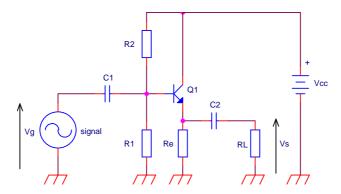

 $R_S = R_C \, / \! / \, R_L$ Le signe - indique que l'amplificateur est déphaseur de π

• Résistance d'entrée

$$Re = R_B // h_{11}$$
 avec $R_B = R_1 // R_2$

• Schéma équivalent de l'étage amplificateur

L'application du théorème de Thévenin conduit au schéma suivant:



A_{V0} est le gain en tension à vide (R_L débranchée)

$$A_{V0} = -\beta R_C/h_{11} = -g_m R_C$$

Lorsque l'impédance des condensateurs n'est pas négligeable, nous sommes en présence de filtres passe haut à l'entrée et à la sortie. On traite les deux problèmes séparément et on applique le théorème de superposition.

Amplificateur en collecteur commun (ou émetteur suiveur)

Gain en tension en petits signaux, moyenne fréquence

L'impédance des condensateurs est très faible à la fréquence considérée.

$$Av = V_S / V_g \approx g_m R_S / (1 + g_m R_S) \approx 1$$

 $R_S = R_C /\!/ R_L$ Le gain en tension est très voisin de 1

• Résistance d'entrée

$$\mathbf{Re} = \mathbf{R}_{B} / / (\mathbf{h}_{11} + \beta \mathbf{R}_{S})$$
 avec $R_{B} = R_{1} / / R_{2}$

La résistance d'entrée est grande

Résistance de sortie

$$R_0 \approx (R_B//R_G + h_{11})/\beta$$
 avec R_G résistance interne du générateur

La résistance de sortie d'un amplificateur en collecteur commun est faible.

L'amplificateur en collecteur commun est utilisé comme adaptateur d'impédance.